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Abstract o-~ = 

The probability formulas given in Parts I and II of 
this series have been improved by incorporating the 
information contained in Sim's distribution. Possible 
applications to the discrimination of the phase 
ambiguities arising from the single isomorphous 
replacement technique, the one-wavelength 
anomalous scattering (OAS) technique or pseudo 
centrosymmetry in small structures are discussed. 
With a set of experimental protein OAS data, the 
efficiency of the improved formula has been shown 
to be better than that of the older one. 
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Notation 

the reciprocal vector, which corresponds to 
the diffraction index hkl 
the structure factor at the reciprocal-lattice 
point H 
the modulus of FH 
the phase of FH 
the normalized structure factor 
the modulus of EH 
the diffraction contribution calculated from 
the real-part scattering of the anomalous 
scatterers, i.e. 

NA 
Fn,A = ~ (fA+Af'A) exp[i27rn.rA] 

A=I 

the diffraction contribution from the 
imaginary-part scattering of the anomalous 
scatterers, i.e. 

N,, 
F~,A = ~ iAf'~ exp [ i2 rrH. rA] 

A=l 

~j Z~, Zj is the atomic number of the j th  
atom in the unit cell, n is an integer equal to 
2 o r 3  
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E 2 Z~/o'2, Z,, is the atomic number of the 
uth atom, which belongs to the unknown part 
of the structure 

Subscripts: 

A the anomalous scattering atoms 
R the replacing atoms of an isomorphous pair 
N the atoms in the native protein 
D the atoms in the heavy-atom derivative of the 

native protein 
p the atoms of the partial structure with known 

positions in the unit cell 
u the atoms of the unknown part in the unit cell 

Formulation 

A phase doublet can be expressed in the generalized 
form 

~OH = ~Oh + l A~O.[. ( 1 ) 

In the ease of single isomorphous replacement 
(SIR)" 

where q~n,R is the phase calculated from the replacing 
atoms. If ~n denotes the phase of a reflection from 
the native protein, then 

A~H~A~H,N 
2 2 2 

=+COS -1 [( FH, D -  FH, R -  FH, N)/2FH,RFH,N]. (2) 

If q~. denotes that from the heavy-atom derivative, 
then 

A~t) a ~ A~H,D 

_ ± COS-! [(F2H,D + 2 2 -- FH.R-- FH,N)/2FH.RFH,D]. 
(3) 
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In the case of one-wavelength anomalous scattering 
(OAS): 

~ h =  - ~H,A, 

" FH, A. c a n  where q~H,A is the phase of " We also write 

~O~i = ~0H, a + (-OH, 

where q~n,A is the phase of FH,A, while ton is the phase 
difference between F~,A and Fn,A. If there is only one 
kind of anomalous scatterer in the unit cell, then 
tOH = ~r/2. We have for the OAS case (see Blundell 
& Johnson, 1976) 

A~prI= +COS-I [(F~-Fn)/ZF'~,A].  (4) 

Notice that ~0H in this case is defined as the phase of 

FH = (F~+FH*)/2 ,  

where FH* is the conjugate of FH. 
In the case that the phase doublets are caused by 

a centrosymmetric partial structure (CPS) in a non- 
centrosymmetric unit cell, 

~ = 27rH. r0, 

where ro is the positional vector of the pseudo inverse 
centre with respect to the origin of the unit cell. 
According to Fan Hai-fu & Zheng Qi-tai (1978) we 
have in this case 

tan ArpH=+(F2-C2) ' /2 /Cn ,  (5) 

where 

Ca = E £  cos 2zrH. ( r j -  ro), 
J 

rj denotes the positional vector of any one of the two 
possible positions associated with the j th  atom in the 
unit cell. 

According to Cochran (1955), for a set of triplet 
structure invariants of the form ~H--~n'--q~n-n', the 
conditional probability distribution of ~H given EH, 
EH,, EH-H', ~Pn' and ~H-H' is as follows: 

PCochran(~H) 

---- N e x p  [ ~ ,  KHH' COS (q~H -- q~H'-- q~I-I-H')], 

(6) 

where N is a normalized factor and 

KHH, = 20r30"2-3/2 EHEH,EH_H ,. 

With the expression cH = q~h + AcH, the triplet phase 
becomes 

~t) H -- ~0n'-- ~0H-- H' = A~0 H -- [ ( ~  "-~- A~0n,'q- A~t~H_H' ] 

~ a~0H-- /3"  , (7)  

where q~ = -<ph + ch, + ~0h-H'" 

Substitution of (7) into (6) gives 

PCochran(A~0H) = N exp [n~, KHH' 

Let 

and 

(8) becomes 

q 
cos (A~. -/3") | .  

(8) 

a' cos f l '=  ~ Ken,  cos/3" (9) 
H' 

a '  s in /3 '=  Y. KHH' sin/3", (10) 
H' 

PCochran(Aq~H) = [2qrI0(t~')] -1 exp [a '  cos (A~OH--/3')], 
(11) 

where Io(a') is the zero-order modified Bessel func- 
tion of the first kind with a '  as argument, 

O~ ' =  KHH, COS /3,t _[_ KHH, sin 13"] ~ , 

tan/3 ' - -  E KHH, s i n / 3 " / E  KHH, COS/3". 
H' / H '  

On the other hand, according to Sim (1959), if 
partial structure information is available, we have 

PSim(O)=[2~Io(X)]-' exp[x  COS 0], (12) 

where 

x = 2EHEH,p/tru, 

0 --'~ ~PH -- ~0H,p, 

EH, p and qgH, p are the modulus and phase of EH, p 
respectively, EH,p is the partial structure contribution 
to EH. With the expression cH=¢~+A~pH, (12) 
becomes 

Psim(A~rl)=[2.rrlo(x)] -l exp[x  cos (A~on- 6n)], 
(13) 

where 

6H = ~n,p -- ~h.  

Combination of (11) and (13) gives the total probabil- 
ity distribution of ACH as 

P(A~pH) = PCochranPsim 

= [27rlo(a)] -l e x p [ a  cos (A<pH--/3)], (14) 

where 

a = KHH, sin/3"+ x sin 6H 

]2}1,2 
-t- KHH' COS/3"-~-X COS (~H 
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and 

tan/3 = [~, Km~, sin/3"+ x sin ~H] 

Since [Aq~n I is a known quantity when phase-doublet 
information is available, the probability that A~n has 
a positive sign can be derived from (14): 

P+(A~pn) =½+½ tanh {sin IA~.I 

x [~, Kun, sin (05~ + A~., + a(pn-n,) 

+xsin,.l}. 
On the other hand, by maximizing (14) we have 
Aqha = ft. Hence 

tan (Aq~n) = [~, KHw sin (05; + A~pn,+ Aq~n-rl') 

+ x sin 8H~ 

x [~, Krm, cos (qS; + A~H, + A~rl-n,) 

+ x  cos ~n] -~." (16) 

With the concept of 'best phase relationship' [Fan 
Hai-fu Han Fu-son & Qian Jin-zi (1984), hereafter 
referred to as paper II], (15) and (16) can be modified 
to give 

P+(ACH) = } + ½ tanh { sinl A,PHI 

l 

[~, mn, mH-n,Knw sin (05; + A~0n'best × 

+A~n-l-rb~t)+x sin •lal} (17) 

and 

tan (Aq~n)= [~, mn,mn-n,Knn' sin (053'+ A~n'best 

n t- A~pH_H,best ) + X sin 8HJ 

× ]~, mn,mH_wKH.,cos (05; + A~Pn,b~t 

I 

l h B ~  ]-' 
+ A~r~_n,b~s~) + X COS ~n , (18) 

where 

mn = exp ( -  o'~/2){[2(P÷ _½)2 + ½] 

× ( 1 - cos 2A~pn) + cos 2Aq~H} I/2 

and 

(19) 

tan (Aq~nbest)= 2(P+-½) sin IA~o.I/cos A~H. 
(20) 

The value of tr~ in (19) is related to the experimental 
error and can be calculated from the mean square of 
the 'lack of closure error' (Blow & Crick, 1959). 
Equations (17) and (18) differ from (21) and (24) of 
II in only the terms containing x and ~n, which carry 
the partial structure information. 

Application to SIR case 

1. With the replacing atoms in a noncentrosymmetric 
arrangement 

Substitute P÷(A~pn) = ½ into (19) and (20), the initial 
mn and A~Hbest can be obtained for all reflections. 
Then, by using (17), new values of P+(A~n) can be 
calculated, most of which will differ from ½ consider- 
ably. Thus the phase ambiguities can be automatically 
resolved. Iterative calculations using (19), (20) and 
(17) can further improve the result. If the refinement 
of [A~H [ is also desired, then (18) should be involved. 

2. With the replacing atoms in a centrosymmetric 
arrangement 

In this case, since 053 = 0 or zr, the term sin (05~ + 
A~pu,best+ Aq~H_H,best ) at the beginning will always be 
zero if P÷(A~pn)----1 is used for all reflections. 

If, in addition to the replacing atoms, some part 
of the structure is known, this gives rise to non-zero 
values of ~n, which is now the phase difference 
between the contribution from the total partial struc- 
ture and that from the replacing atoms. Consequently, 
P÷(A~pn) calculated from (17) will be biased to differ 
from ½ by the term x sin ~H. Hence the procedure 
mentioned in l will still be applicable. 

If, on the other hand, there is no partial structure 
information other than that of the replacing atoms, 
8n will be always zero. Thus, starting from P÷(A~pn) = 
I ~, the same P÷(Aq~H) will be obtained from the calcula- 
tion using (19), (20) and (17). Hence the problem of 
phase ambiguity cannot be solved as above. This 
difficulty can be overcome by a multi-solution pro- 
cedure using random starting sign sets. Assign ran- 
domly to every IA~nl a positive or negative sign 
associated with P÷--0.6 or P÷--0-4, respectively. 
Iterative calculations using (19), (20) and (17) are 
then used to refine the signs. A figure of merit defined 
as the following is used to select the best solution. 
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where ml/2 is the mn calculated with P+ =½, i.e. 

ml /2 - - - - exp  (-o'~/2)[cos a~nl. 

Hence 

F O M =  [~n mHEn/~" exp (--tr2/ 2)lcos A~°HIEn] - 

Table 1. Test results with APP data using 1000 E's 
and 60 000 ~2 relationships 

I Results calculated with (17). 
II Results calculated with (21) of  paper II. 
% Percentage of  reflections with the signs of A~0n correctly deter- 
mined in the test. 
ER Average error of  phases (in degrees). 

I II 

Application to OAS case 

In this case, neither sin (qb~ + A~H,best-I- d~t)H_H,best ) 
nor x sin 8H will be identical to zero at the beginning. 
Using (19), (20) and (17), the phase ambiguities can 
be broken easily by starting with P+--½. The pro- 
cedure is equivalent in principle to combining the 
direct method with the 'resolved anomalous scattering 
method' proposed by Hendrickson & Teeter (1981). 
The latter method has proved to be efficient in solving 
some unknown small protein structures. It is reason- 
able to expect that this method can be strengthened 
by the incorporation of a direct method. 

Application to the CPS case in the absence of SIR and 
OAS data 

This subject is in fact beyond the scope of the present 
paper. However, the treatment in this case is closely 
related to that in the SIR case. Hence a brief descrip- 
tion is given here. 

In the determination of small noncentrosymmetric 
structures containing heavy atoms, it often happens 
that the heavy atoms are in a centrosymmetric 
arrangement leading to the enantiomorphous phase 
ambiguity and resulting in a pseudo centrosymmetric 
image, which contains both enantiomorphs. On the 
other hand, direct-method determination of light- 
atom structures belonging to polar space groups, such 
as P2~, leads sometimes to the instability of the enan- 
tiomorph fixation resulting also in a pseudo cen- 
trosymmetric image. This is a well known difficulty 
in the determination of small structures. However, 
the problem can be solved easily by making use of 
(17) and (18). Starting from the pseudo centrosym- 
metric image we can calculate Cri and then obtain a 
set of IA~n[ using (5). If the structure contains heavy 
atoms in known positions, then let the partial struc- 
ture consist of the heavy atoms and one of the light 
atoms, whose position can be fixed by picking up any 
one of the two possible positions on the pseudo 
centrosymmetric image. Then the phase ambiguity 
can be resolved by a procedure like that of 1 in the 
SIR case. Alternatively, we can use the multi-solution 
procedure like that described in the SIR case to derive 
the signs of A~OH. 

Procedures similar to those described in this para- 
graph have already been tested on solving the enan- 
tiomorphous ambiguities in a number of small struc- 
tures and were verified to be very efficient (Fan Hai-fu 

Cycle % ER % ER 

1 86-3 36 63.5 61 
2 86.0 37 76.0 47 
3 86.0 37 86.0 37 
4 86-0 37 86.0 37 

& Zheng Qi-tai, 1978; Fan Hai-fu & Qian Jin-zi, 1981 ; 
Fan Hai-fu & Zheng Qi-tai, 1981; Fan Hai-fu & Gu 
Yuan-xin, 1982). 

Test for the effect of the incorporation of partial 
structure information 

A comparison of the efficiency of the two probability 
formulas, (17) of the present paper and (21) of paper 
II, was made by test calculations with the experi- 
mental OAS data from the Hg derivative of APP 
(avian pancreatic polypeptide), which crystallized in 
space group C2 with.unit-cell dimensions a = 34.18, 
b=32.92,  c = 2 8 . 4 4 A  and /3= 105.30°4 There are 
about 2100 independent reflections at 2 A resolution. 
1000 largest E 's  were included in the calculation. 
They yielded about 130 000 ~2 relationships, only 
60 000 of them were reserved and used for deriving 
the probability P+(ACH). The calculation was done 
on an IBM 4341 computer. 20 min CPU time was 
used for setting up the ~2 relationships and 1 min 
CPU time per cycle was required for the iterative 
calculation of P+(A~0n). The results are listed in Table 
1. It shows that, with the incorporation of the partial 
structure information, only one cycle of iteration led 
to a good and stable result while, without the incor- 

p o r a t i o n  of the partial structure information, for 
obtaining a similar result three cycles were needed. 
It also shows that the difference between the two sets 
of results is significant at the beginning of the iteration 
process but becomes negligible at the final stage. This 
can be interpreted as follows: 

Equation (17) differs from (21) of paper II only in 
the term x sin ~n. At the beginning, since mn are all 
small, x sin ~n plays an important role. As the iter- 
ation goes on, the effect of x sin 8n will reduce with 
the increase of the values of mH. For a protein crystal 
the diffraction contribution from the whole structure 
will be much greater than that from the heavy atoms, 
hence the effect of x sin 8n will be small at the final 
stage. However, this will not be the case for small 
structures. 

The authors are indebted to Professor T. L. Blundell 
for making available the APP data. 
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Abstract 

The method described in the preceding papers has 
been applied to the single isomorphous replacement 
(SIR) case with the replacing atoms in a centrosym- 
metric arrangement. Two kinds of phase ambiguities 
simultaneously occurred in this example. One is 
inherent in the SIR method and was resolved by 
calculating the probabilities P+(Aq~.). The other 
comes from the special arrangement of the replacing 
atoms and was treated by a multi-solution procedure 
with random starting sign sets. A new figure of merit 
was used to predict the quality of the solutions. The 
method has been verified using a set of error-free data 
from the model structures of a protein and its heavy- 
atom derivative. 

Introduction 

Many attempts have been made since Blow & Ross- 
mann (1961) to resolve the phase ambiguity of the 
SIR method in the determination of protein struc- 
tures. The ambiguity can in principle be resolved in 
either the real or the reciprocal space. Up to now the 
real-space methods have been more successful in 
practice. With the so-called ISIR method, a dozen 
unknown protein structures have been solved (Wang 
Bi-Cheng, 1981, 1984). However, in spite of its high 
phasing power, this method is subject to the limitation 
that it will not be applicable if the replacing atoms 
are in a centrosymmetric arrangement. This paper 
describes the application of a reciprocal-space 
method to treat this problem. 

0108-7673/85/030284-02501.50 

Method 

In the SIR case, each reflection not belonging to a 
centric zone has two equally possible phases, i.e. 

9 .  = ~.,R ± lAg.I, 

where q~. denotes the phase of the structure factor 
F . ,  q~.,R is the phase contribution from the replacing 
atoms and Aq~. is the difference between q~. and q~n,n. 
According to our preceding papers (Fan Hai-fu, Han 
Fu-son, Qian Jin-zi & Yao Jia-xing, 1984; Fan Hai-fu, 
Han Fu-son & Qian Jin-zi, 1984; Fan Hai-fu & Gu 
Yuan-xin, 1985; hereafter referred to as papers I, II 
and III respectively), this phase ambiguity can be 
resolved by calculating the probability for A~o. to 
have a positive sign: 

P+(A~0H) = ½+½ tanh {sin IA~.I 

x [~, mn,mn-n,Knn, sin (q~ + A~OH,best 

+ a'P.-.'bos,)] }, 
where 

and 

mn = exp (-tr~/2){[2(P+ _ ½)2 +I] 

x(1 - c o s  2A~H) + cos 2Aq~.} 1/2 

tan (a~Onbes,) = 2(P+-½) sin lAg.I/cos A~.. (3) 

(1) 

(2) 
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